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Abstract:  

Background: Twelve bacterial families were identified as global priority pathogens by the 

World Health Organization in 2017, recognizing the greatest threat they pose to human health 

and the declining antibiotic efficacy. Robotics has emerged as a swift and contactless tool for 

disinfecting bacterial surface contamination in healthcare facilities, however, head-to-head 

comparison of disinfection efficacy of robotic versus manual disinfections is limited. This study 

aimed at comparing how robotic disinfection performs over manual disinfection against the 

global priority pathogens in the healthcare setting.   

Methods: A spraying disinfection robot was developed, and its disinfection efficacy was 

compared against manual disinfection during July 2020-December 2020. Disinfections were 

performed on the clinical surfaces and inanimate objects at two hospitals in Nepal using robotic 

or manual application of a disinfectant (NaOCl). Swab samples from floor, bed, doorknob, and 

medical devices at both hospitals were collected before and after disinfection and examined for 

total heterotrophic plate count and bacterial pathogens were identified based on Gram’s staining 

and biochemical characteristics. Disinfection outcomes were reported as log reduction (log10 

CFU/inch2) of heterotrophic count and presence or absence of target bacteria. A total of 76 

samples were collected from two study sites including major pathogens:  Staphylococcus 

aureus, Escherichia coli, Acinetobacter spp., and Klebsiella pneumoniae, among others.  

Results: Both robotic and manual disinfection significantly reduced microbial load (log 2.3 to 

log 5.8) in the hospitals. No pathogens were detected post-disinfection using the robot. The use 

of robotic disinfection was more effective, significantly reducing more bacterial load (log 5.8) 

compared to manual disinfection (log 3.95).  

Conclusions: Our results showed better efficacy of robotic disinfection compared to manual 

disinfection of hospital surfaces, and thus contactless robotic disinfection is recommended for 

disinfecting bacterial contamination of surfaces in the hospital and clinical settings as it favors 

patient safety against global priority pathogens.  

 

Keywords: bacteria, pandemic, robotics, disinfection, microbial inhibition 
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BACKGROUND 

Healthcare organizations must have contingency plans to manage and control infectious 

diseases1. Human-to-human transmissions of infectious microbes are facilitated by aerosolized 

droplets, infected hands, and contaminated surfaces2. As a response, disinfections of public and 

healthcare settings are prioritized to prevent future spread3. In 2017, the World Health 

Organization (WHO) catalogued a list of twelve families of bacteria as the global priority 

pathogens (GPPs), due to the greatest threat they pose to human health and the declining 

efficacy of antibiotics against the bacteria4. Antibiotic resistance (AR) or multidrug resistance 

(MDR) is a growing global crisis, resulting in over 1.2 million deaths worldwide in 2019, with 

the United States (US) experiencing around 35,000 deaths per year from resistant infections5,6.  

Drug-resistant infections-related deaths are forecasted to increase to approximately 10 million 

deaths per year by 2050 if no proactive measures are taken7. The bacteria responsible for the 

most deaths associated with resistance were Escherichia coli, Staphylococcus aureus, and 

Klebsiella pneumoniae followed by Streptococcus pneumoniae, Acinetobacter baumannii, and 

Pseudomonas aeruginosa5, whereas for the US, carbapenem-resistant Enterobacteriaceae, 

Clostridioides difficile, and methicillin-resistant S. aureus (MRSA) were implicated as the most 

common AR/MDR causing deaths6. Strategies to address AR/MDR threat include improving 

antibiotic stewardship, investing in new antibiotic research, and implementing better infection 

prevention and control measures8.  

Implementation of robotic disinfection in the healthcare and quarantine facilities emerged 

during COVID-19 pandemic, with a focus on managing the spread of SARS-CoV-29. Based on 

experience from COVID-19 pandemic, developing risk mitigation strategies with multisectoral 

collaboration to minimize spread of such contagious infections is paramount for public health 

protection10. Humanoid robots, self-governing vehicles, drones, and other astute robots have 
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also gained increased interest in various sectors, including entertainment, healthcare, security, 

rescue missions, and space industries11,12. Spraying robots are commonly used to spray 

disinfectants over large outdoor areas, such as public places and residential areas. These robots 

are operated remotely to avoid personal contact and improve disinfection efficiency9. 

Traditional cleaning and sterilizing systems rely on a human administrator to select and detail 

a suitable specialist and assign the operator to all target surfaces for the required contact 

duration. Improvement of these standard tactics necessitates a shift in human behavior, which 

is often difficult to achieve13–16. The use of 'no-contact' or ‘contactless’ automated room cleaning 

frameworks can help alleviate these concerns17.  

It is well documented that the SARS-CoV-2 virus is primarily spread by intimate personal 

contact and respiratory droplets, while airborne transmission during aerosol-generating medical 

procedures is conceivable in healthcare and nonclinical settings. Further, environmental 

surfaces are more likely contaminated with pathogenic viruses, bacteria, and fungi, which can 

pose significant public health and safety risks18–20. Despite ongoing efforts, AR/MDR amongst 

bacteria remains a major public health threat in the US and globally21,22. 

It is now evident that higher mortality among COVID-19 patients occurred due to secondary 

infection or co-infection of bacterial and/or fungal pathogens, which has received inadequate 

attention23. Bacteria have been found to survive on inanimate objects for varying periods19,23,24. 

The duration of bacteria survival on colonized items is directly related to the risk of 

transmission. The ability of bacteria to colonize and survive in a given object may be influenced 

by geographical and environmental factors such as temperature, humidity, presence of organic 

matter, the ability to form biofilms, and infection control measures used19. The hospital 

environment harbors a variety of pathogenic and opportunistic bacteria, including Gram-

positive pathogens such as C. difficile, methicillin-resistant S. aureus (MRSA), vancomycin-
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resistant Enterococcus (VRE), and Gram-negative pathogens such as Pseudomonas, Klebsiella, 

and Acinetobacter spp., and are transmitted through contaminated surfaces19,23,25–28. 

In Nepal, robots were used for communication and serving food and medicine to COVID-

19 patients29. Disinfecting robots have not yet been established in Nepal to control 

the pathogens present in hospital settings with COVID-19 patients and other patients with 

contagious infections. The efficacy of sprayed disinfectants against bacterial pathogens in 

hospital settings has been inadequately investigated and reported so far. Besides, SARS-CoV-

2 infection, there might be other bacteria contributing to morbidity and mortality among 

COVID-19 patients. This study aimed at measuring disinfection outcomes on frequently 

touched surfaces before and after disinfection using robotic and manual applications of a 

common disinfectant, sodium hypochlorite (NaOCl), in the hospitals of Nepal. We hypothesize 

that robotic disinfection, owing to contactless and error-free application, will outperform 

manual disinfection of the hospital surfaces and lead to higher reduction in the microbial load. 

To the best of our knowledge, there is a severe lack of data regarding bacterial colonization of 

inanimate objects in hospitals during the COVID-19 pandemic. Identifying such bacteria and 

comparing manual vs. robotic contactless disinfection would guide hospital administrators and 

public health professionals to mitigate pathogenic bacterial transmission and limit secondary 

infections and co-infection during times of infectious disease outbreaks. 

Materials and Methods 

Study design  

This cross-sectional quantitative study was conducted from July 2020 to December 2020. 

The study was designed to compare the disinfection procedures by manual (human) versus 

robotic applications. This study was divided into two parts: the design and assembly of a 
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disinfectant-spraying robot, and the evaluation of the disinfection by deploying the spraying 

robot at two COVID-19 dedicated hospitals: KIST Teaching Hospital, Lalitpur, and National 

Ayurveda Research and Training Center, Kirtipur, Nepal. The latter was designated as an 

Isolation and Quarantine centre by the Government of Nepal during the COVID-19 pandemic. 

Both manual and robotic application of disinfectant were performed by healthcare workers and 

custodians. 0.5 % NaOCl solution was used as a disinfectant.   

Specifications and working principle of the robot developed 

A remotely controlled robot, capable of spraying NaOCl in hospitals and quarantine 

settings, was designed and developed (Figure 1). Arduino served as the main processing unit, 

offering a variety of controls and motions. The mobile application, through a wireless 

connection, provided users with full control over the robot, enabling effortless movement and 

NaOCl spraying with just a touch of their finger.  The photograph, design flow and coding of 

the robot are presented in Figure 1 and its working principles are as follows: The robot ver. 1.0, 

with a differential drive, uses four 24V DC motors to control each wheel’s rotation. It is 

managed by an Arduino Mega 2560 microcontroller, which controls motor drivers and 

Bluetooth signals. The DC motors, controlled by an H-bridge L298N driver, can operate in both 

clockwise and counter-clockwise directions. The Arduino’s PWM (Pulse Width Modulation, a 

technique that enables analog-like results using digital signals by varying the "width" of pulses 

within a fixed period) input determines the motor driver’s speed and direction control. The 

wooden two-axis arm, used for NaOCl spraying, is operated by a NEMA 17 stepper motor and 

a MG995 servo motor for horizontal and vertical movement, respectively. A stepper A4988 

driver controls the stepper motor for precise arm movement, with two proximity sensors 

attached for enhanced control. A 12V DC water pump sprays NaOCl, controlled by an on/off 

relay switch. The robot has two proximity sensors mounted at the front and back. The proximity 
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sensors are used to detect obstacles in the path of the robot and signal the controller if any 

obstacle is detected. The robot uses a Raspberry Pi Model 3B+ for video streaming. The video, 

captured by a Raspberry Pi Camera, is broadcast via Wi-Fi to the mobile app. The robot, 

equipped with an HC-05 Bluetooth module, is controlled via a mobile app using Bluetooth. 

The mobile app was created using Flutter and comes with an interface for controlling the 

robot as well as for viewing the video that is captured by the robot. The robot’s power supply 

is split: one for the DC motors, and the other for the remaining components. The motors, being 

noisy, are isolated to prevent interference with other components. The isolation is done using 

optocouplers. Three Buck regulators distribute 5V: one for the high-current Raspberry Pi, one 

for the DC motor part of the circuit, and one for the remaining components. The Arduino Mega 

is directly powered by a 12V battery. The robot features two battery indicators: one for the DC 

motors and another for the rest of the circuit. Notable features of the Version 1.0 robot are a 

transparent body, wide-body frame structure, differential drive of wheels, low ground clearance, 

wooden arm, LED indicators for visual inspection, and 180-degree arm movement. 

 

Sample collection and transportation 

Surface swabs from the floor, bed (resin) or bench, doorknobs, and medical devices were 

evaluated for bacterial density and potential pathogens identified before and after disinfection. 

The robot was used for disinfection at the sampling sites. The effectiveness of robotic 

disinfection was compared with manual disinfection at a hospital and a quarantine center. The 

COVID-19-dedicated KIST Teaching Hospital in Lalitpur and the National Ayurveda Research 

and Training Center, a quarantine/isolation centre in Kirtipur, facilitated robotic disinfection 

research and sample collections. The study employed the widely used disinfectant, 

NaOCl. Surface swabs from various objects were collected before and after NaOCl 
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application.  Manual disinfection was both facilities’ routine cleaning procedure. Robotic 

disinfection, using a 0.5% NaOCl solution, was performed on separate days and different areas 

following manual disinfection. 

From KIST hospital, samples were collected (in triplicates) from bed, door, doorknob, and 

hospital instruments (three replicates for each) each day for three days after 30 minutes of 

disinfectant application. From the National Ayurveda Research and Training Centre’s 

quarantine settings, samples were obtained from 10 beds, 10 doorknobs, 10 floors, and 10 

quarantine instruments, and the collection was performed for two days. Sample collection 

strategies between two collection sites were not same because extra precautions had to be 

exercised to avoid potential exposures from COVID-19 during sample collection at the National 

Ayurveda Research and Training Centre as it served as the main quarantine site for COVID-19 

patients and limited knowledge existed at that time about potential transmission; thus, only 

inhibition of microbes was determined as CFU present or absent over the course of two days 

versus three days for KIST hospital. The duration and sample count varied based on 

permissions, influenced by disease severity. Collected swabs were stored in saline-filled, 

cotton-sealed sterile test tubes. Using triple-packing system, the sample tubes were placed in 

sanitized ziploc containers and stored in an ice box. The samples were transported within 2 h to 

the Microbiology laboratory at the Central Department of Microbiology, Kirtipur, Nepal. 

Heterotrophic plate count and detection of pathogens  

The swabs were cultured in MacConkey agar (MA), blood agar (BA), cetrimide agar (CA), 

and Manitol Salt Agar (MSA). The quadrant streak method, using a whole plate, was employed 

for culture. After inoculation, the plates were incubated for at least 24 h at 37°C, and colonies 

were observed and enumerated. The colonies showing significant growth were isolated and used 
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for identification of the bacterium at the species level. The identification of the significant 

isolates followed multiple standard microbiological methods25, including morphological 

appearance of colonies, staining reactions, and biochemical properties.  

Data Analysis 

Data were recorded in MS-Excel spreadsheets, and SPSS v.22 (IBM Corp., Armonk, NY) 

and GraphPad Prism 8.4.3 (GraphPad; LaJolla, CA) were used for statistical analysis. 

Percentages and Chi-square tests were used to evaluate the disinfection efficacy and the p-value 

< 0.05 was considered statistically significant.  Graphs were plotted using Python 3.11 in 

Spyder. 

RESULTS 

Testing and validation of the spraying robot  

The performance testing and validation of the spraying robot were done at the Institute of 

Engineering, Tribhuvan University, Nepal. These included spraying robot tasks and 

achievement testing as well as tasks on the electronic and communication systems of the robot. 

The working time was 45 min (video stream on) and one h (video stream off). The spray range 

was between one-two meters covering the spray area of 2-2.5 m2 per min.  

Efficacy of manual application of the disinfectant at the hospitals 

At KIST hospital, among 36 samples (three days x 12 samples x three replicates) taken 

before the disinfection, five samples harbored the pathogens (5/36); the total number of samples 

that were positive for S. aureus, E. coli, and K. pneumoniae were two, one, and one, 

respectively. Both samples for S. aureus positive were from beds, one E. coli positive sample 
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was from the doorknob, and one K. pneumoniae positive sample was from a ventilator used in 

COVID-19 patients’ isolation ward. No target pathogens were detected in any of the samples 

after manual disinfection (p = 0.023; Figure 2).  

The manual disinfection in the quarantine setting was also found to significantly inhibit the 

pathogens (p = 0.003). The pathogens that were isolated were S.  aureus, E. coli, K. pneumoniae, 

and Acinetobacter spp. In the study, S. aureus was found in seven samples (three from benches, 

three from floor, and one from hospital stand), E. coli in seven samples (three from hospital 

instruments, four from floor), and K. pneumoniae in two samples (from the floor and 

stand) whereas Acinetobacter spp. was found in one sample (from the floor) out of 40 sampling 

points (Figures 2, 3). In total, 17 isolates were isolated from 12 samples (12/40). None of the 

target bacteria were detected in any samples after disinfection. For the floor, nine pathogens 

were isolated from six samples (6/10) prior to manual disinfection, indicating the considerable 

occurrence of the pathogens. After disinfection, two samples (2/6) from the saline stands still 

contained pathogens, potentially due to manual cleaning errors. Given the small sample size, 

the impact of manual disinfection on the floor was not statistically significant (p > 0.05). 

Efficacy of robotic disinfection in      quarantine and hospital settings 

A total of 10 floor sampling points were identified to apply the robotic disinfection  in the 

quarantine center at the National Ayurveda Research and Training Center due to COVID-19 

restriction issued by the center. Prior to disinfection, three isolates of S. aureus were obtained 

from a total of 10 samples. No pathogens were detected following the robotic disinfection 

(Figure 2d).  

For three days, three samples per day were taken from the bed, door, floor, and medical 

devices from the KIST hospital settings. Out of 36 samples, S. aureus (two from elevators, three 

from floor, and one from bed), E. coli (one from floor and one from door), and K.  pneumoniae 
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(one from elevator) were isolated prior to disinfection. However, none of the bacteria were 

detected in any sample following robotic disinfection (Figure 2). The robotic disinfection was 

found to significantly eliminate pathogens from all the hospital surfaces (p= 0.02).   

Microbial load reduction at the hospital following different disinfection modalities 

For manual disinfection, microbial load (CFU/inch2) decreased significantly (p = 0.002). 

However, a complete reduction of the microbial load was observed only in 25% of the samples 

following manual disinfection      .  The robotic disinfection significantly reduced microbial load 

in the hospital samples (p = 0.002) with a complete reduction in microbial load observed in 

58.33% of the samples     (Table 1)     , which is more than double the disinfection rate compared 

to manual disinfection. 

As shown in Figures 2 and 3, a reduction in microbial load was observed on the floor surface 

swab samples in both the manual and robotic applications. The results showed that robotic 

disinfection had more inhibitory action (reduction up to log10 5.8 CFU) compared to manual 

disinfection (reduction up to log10 3.95 CFU).  

Complete inhibition of potential pathogens following disinfection procedures 

Among 36 surface swab samples, post-disinfection enumeration of bacterial load revealed 

that only 25 % (9/36) of swab samples taken after manual disinfection had no bacterial growth, 

while 58.3 % (21/36) swab samples taken after robotic application of disinfectants in the 

hospital inhibited bacterial growth (Table 1). This implies superior performance of robotic 

disinfection of the hospital surfaces over manual disinfection. Before disinfection, certain 

surfaces in the hospital were found contaminated with potentially pathogenic bacteria including 

S. aureus, E. coli, K. pneumoniae, and Acinetobacter spp. However, none of the surfaces were 

found contaminated after the disinfection,  indicating that the surface disinfectants applied in 
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the hospital and quarantine centre were effective (Table 2). However, microbial load was not 

determined in the quarantine settings, albeit presence or absence of CFUs were determined pre- 

and post-disinfection (Table 2), due to the risk of SARS-CoV-2 transmission as there were 

many COVID-19 cases during the sampling schedule. This was crucial as we wanted to 

minimize the risks of SARS-CoV-2 transmission while sampling the surfaces and handling the 

samples.  

DISCUSSION 

The results of this study highlight the crucial role of robotics in managing global priority 

pathogens that are of greatest threats to public health and safety in the healthcare setting and in 

the context of the COVID-19 pandemic. The chemical disinfectant, NaOCl, used in the hospital 

and quarantine settings was demonstrably effective under both manual and robotic applications. 

Notably, however, the use of the robotic disinfection system resulted in a higher microbial load 

reduction when compared to manual disinfection. This can be attributed to the precision 

application by the robot; they can be programmed to follow precise disinfection procedures, 

reducing the chance of human errors that can occur with manual application30,31. This 

underscores the importance of automatic, contactless disinfection procedures in infection 

control within the healthcare setting. 

Chemical disinfection is a critical tool for preventing infection, and research into how to 

assure the efficacy of disinfectants and the disinfection process, as well as when, how, and 

where to use disinfection precautions, is a never-ending decision that involves an 

interdisciplinary team effort32. Healthcare workers frequently become ill and lose their lives due 

to infectious diseases and more so during pandemics33. Contactless cleaning could benefit 

healthcare workers dealing with contagious infections. The implementation of contactless 
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cleaning methods, such as robotic disinfection systems, could provide a swift and safer approach 

for healthcare workers dealing with contagious infections. 

Prior to the application of both disinfection systems, swab samples revealed the presence of 

the WHO priority pathogens including E. coli, S. aureus, K. pneumoniae, and Acinetobacter 

spp. Following the disinfection processes, most of these organisms were effectively inhibited, 

resulting in a significant decrease in the microbial load. The reduction of the microbial load was 

significant, and a complete reduction occurred in 58.33% of the total samples after the robotic 

disinfection whereas complete inhibition was observed in only 25% of the samples following 

manual disinfection.  The microbial load reductions in bed, floor, door, and hospital instruments 

were higher for robotic disinfection compared to manual disinfection. Robotic disinfection 

demonstrated greater effectiveness (higher median reductions) for the samples collected from 

the doors and floors compared to manual disinfection. This might be related to the potency of 

disinfection maintained in the cleaning process. Overall, the variability in log-reduction across 

samples could be related to material surfaces, environmental and procedural factors. For 

example, the porous surfaces in bed may likely allow microbes to avoid disinfectant that may 

lead to inconsistent results34. However, this suggests that the application of disinfectant using a 

robot is more effective than manual application in hospital and quarantine settings for reducing 

global priority pathogens and the overall microbial load. This further underscores the potential 

benefits of robotic disinfection systems in infection control. A report suggested that typical 

manual cleaning and disinfection techniques in hospitals are generally inadequate, which could 

be related to failure to follow disinfectant manufacturers' guidelines or the absence of 

antimicrobial activity of some disinfectants against healthcare-associated infections13, while 

robots have been lauded for taking on dangerous and unsanitary work, frequently in adverse 

settings35. 
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Contaminated hospital surfaces are a well-known cause of common-source infection26. 

Furthermore, hospitalization in a room where the previous patient had been colonized or 

infected with certain pathogen has been shown to increase the likelihood of the subsequent 

occupant being colonized or infected with the same pathogen35,36. Microbiological assessment 

of surfaces helps determine the efficacy of cleaning and disinfection procedures37. Robots can 

provide a contact-free approach when pathogens in question are extremely infectious such as 

global priority pathogens and coronaviruses, among others. Several robots, notably coronavirus 

robots, have been utilized in quarantine enforcement, sanitizing public spaces, identifying 

infected people, managing infectious items, and for other tasks38. 

Our findings are particularly significant in the context of the pandemic situations and could 

have far-reaching implications for infection control in hospitals and quarantine centres. The use 

of robotics for disinfection reduces the need for human involvement, thereby reducing the risk 

of disease transmission39,40. This highlights the potential of robotics in enhancing safety and 

efficiency in infection control within healthcare and clinical settings. 

This research highlights the vital role of robotics in managing infectious bacterial diseases, 

especially during the COVID-19 pandemic in Nepal. Two key findings emerged from this 

study: the presence of global priority pathogens in the Nepalese hospital environment and the 

superior efficacy of robotic disinfection compared to manual disinfection. While we were 

successful in developing a user guided robot and demonstrated the proof-of-concept of its 

improved disinfection performance compared to manual disinfection, future efforts to 

automatize the robot would be crucial to minimize personnel labor, time and cost of disinfection 

while improving disinfection efficacy. 

CONCLUSIONS 
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While both the manual and robotic disinfection methods significantly reduced pathogenic 

bacterial burden from the surfaces and inanimate objects in two hospitals, our results showed 

that the robotic application of disinfectant achieved a higher reduction in the bacterial load. This 

confirmed our hypothesis that robotic disinfection, owing to contactless and error-free 

application, significantly outperformed manual disinfection of the hospital surfaces. While this 

pilot study was conducted in two hospitals in Nepal, future research could include viral and 

fungal pathogens, too, and determine the efficacy of robotic disinfection in public and private 

hospitals and clinics in other regions, cities, and villages of Nepal. Nonetheless, the utilization 

of robotics for disinfection of surfaces may help execute swift and effective disinfection of 

healthcare facilities to promote public health and safety. 
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Figures and Tables 

 

Figure 1. Robot prototype (a), design (b) and coding used (c) for the operation of the disinfection robot 

used in this study. 
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Figure 2. Manual disinfection (a) versus robotic disinfection (b) of priority pathogens from different 

areas at the KIST hospital, and manual disinfection (c) versus robotic disinfection (d) at the National 

Ayurveda Research and Training Center, Nepal.  Areas sampled were bed, door, floor and hospital 

instruments. The numerals denote the number of samples that tested positive for a given bacteria out 

of 9 samples analyzed for KIST hospital and 10 samples analyzed for National Ayurveda Research 

and Training Center. 

 

 

Figure 3. Average microbial load reduction (log10 CFU/inch2) by manual (a) and robotic application 

(disinfection robot version 1) (b) using the disinfectant, NaOCl, at the KIST hospital. 

 

Jo
ur

na
l P

re
-p

ro
of



24 
 

Table 1: Manual and robotic disinfection rates (log10 CFU/inch2) at the KIST hospital, Nepal.  

Sample ID log10 CFU/inch2 (before) log10 CFU/inch2 

(after) 

Reduction (log) p-value 

B1 1.1x10^6 2.3 x 10^5 0.64  

 

 

 

 

 

 

 

 

 

 

 

0.002 

 

B2 1.51x10^8 9 x 10^5 1.22 

B3 1.61x10^8 3.99 x 10^5 1.61 

D1 2.57 x 10^5 1.1x10^4 1.36 

D2 9.8 x 10^5 2.63x10^5 0.58 

D3 3.96 x 10^5 9x10^3 1.65 

F1 9.8x10^5 3.7x10^3 2.42 

F2 2.85x10^5 9x10^3 1.51 

F3 9x10^5 3.2x10^3 2.45 

M1 1.35x10^8 1.2x10^6 1.05 

M2 1.5x10^8 1.5x10^7 1 

M3 TNTC 1.65x10^8 - 

B4 1.1x10^8 0 8.04 

B5 TNTC 6x10^5 - 

B6 1.2x10^8 4.5x10^3 4.38 

D4 7.5x10^5 3.5x10^3 2.33 

D5 4.5x10^7 0 7.65 

D6 1.3x10^6 0 6.11 

F4 9x10^5 9.1x10^3 1.99 

F5 1.19x10^6 0 6.07 

F6 6x10^7 0 7.77 

M4 1.1x10^8 1.06x10^4 3.84 

M5 TNTC 1.43x10^6 - 

M6 1.42x10^8 1.8x10^7 0.89 

B7 1.03x10^6 7.8x10^7 -1.87 

B8 1.89x10^4 0 4.27 
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B9 1.01x10^4 5.6x10^3 0.26 

D7 3.4x10^5 6.7x10^5 -.29 

D8 5x10^7 8.9x10^5 1.75 

D9 1.57x10^6 1.23x10^4 2.11 

F7 4.9x10^5 6x10^3 1.91 

F8 2.2x10^5 0 5.34 

F9 1.1x10^6 0 6.04 

M7 9.8x10^5 7x10^5 0.14 

M8 TNTC 7.6x10^3 - 

M9 9.5x10^5 0 5.98 

Complete inhibition by manual disinfection = 9/36 (25%) 

B1 1.31x10^6 0 6.11  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.002 

B2 1.9x10^6 9x10^3 2.32 

B3 TNTC 1.78x10^4 - 

D1 2.4x10^7 1.29x10^4 3.26 

D2 4x10^5 0 5.60 

D3 0 9x10^3 -3.95 

F1 8x10^5 0 5.90 

F2 1.23x10^6 5.6x10^5 0.34 

F3 1.28x10^4 0 4.10 

M1 1.34x10^6 9.8x10^3 2.13 

M2 1.67x10^4 2.33x10^5 -1.14 

M3 9.8x10^5 1.37x10^4 1.85 

B4 1.65x10^6 0 6.21 

B5 2.67x10^6 0 6.42 

B6 2.04x10^4 6.8x10^3 0.47 

D4 3.31x10^5 6.2x10^3 1.72 

D5 1.89x10^8 0 8.28 

D6 2.53x10^6 9x10^3 2.45 
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F4 6.1x10^7 0 7.79 

F5 7.9x10^7 0 7.89 

F6 2.1x10^7 0 7.32 

M4 1.08x10^4 0 4.03 

M5 9.3x10^5 3.7x10^3 2.40 

M6 4.3x10^5 6.8x10^3 1.80 

B7 8x10^3 0 3.90 

B8 1.62x10^4 0 4.20 

B9 1.1x10^6 0 6.04 

D7 2.19x10^7 0 7.34 

D8 1.26x10^6 0 6.10 

D9 3.37x10^5 0 5.52 

F7 2.80x10^7 0 7.44 

F8 2.19x10^5 0 5.34 

F9 1.1x10^6 0 6.04 

M7 4.4x10^5 0 5.64 

M8 1.24x10^6 3.7x10^3 2.53 

M9 3.88x10^5 6.8x10^3 1.76 

Complete inhibition by robotic disinfection = 21/36 (58.33%) 

M denotes different devices such as elevators, incubators, saline stands, and ventilators; B denotes bed; F denotes 

floor; D denotes doorknobs; TNTC denotes too numerous to count. 

 

Table 2: Manual (top panel) and robotic disinfection (bottom panel) of the floor at the National Ayurveda 

Research and Training Center, Nepal. 

Manual disinfection 

Sample ID Before After Pathogen p-value 

QF1 Growth No growth S. aureus  

 

 

 

0.193 

QF2 Growth No growth S. aureus 

QF3 Growth No growth S. aureus and E. coli 

QF4 No growth No growth - 

QF5 No growth No growth - 

QF6 No growth Growth E. coli and K. pneumoniae 

QF7 No growth Growth E. coli and Acinetobacter spp. 

QF8 No growth No growth - 
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QF9 No growth No growth - 

QF10 Growth No growth E. coli 

 

 

Robotic disinfection 

Sample ID Before After Pathogen p-value 

QF1 No growth No growth -  

 

 

 

0.081 

QF2 No growth No growth - 

QF3 Growth No growth S. aureus 

QF4 No growth No growth - 

QF5 Growth No growth S. aureus 

QF6 No growth No growth - 

QF7 No growth No growth - 

QF8 Growth No growth S. aureus 

QF9 No growth No growth - 

QF10 No growth No growth - 

QF denotes quarantined floor. 
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Highlights 

• WHO global priority pathogens pose greatest threat to public health. 

• Robotic versus manual disinfection of surfaces were examined for two COVID-19 hospitals 

in Nepal. 

• Both robotic and manual disinfection could inhibit microbial load (log 2.3-log 5.8) in both 

hospitals. 

• Robotic disinfection was more effective compared to manual disinfection (log 5.8 vs. 

log 3.95). 

• Contactless robotic disinfection is recommended over manual disinfection for 

improved patient safety. 
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