

The Science of Aerosolized Hydrogen Peroxide

Agenda

Surface Spread HAIs

- Surface Spread Pathogens
- Pathogen Regrowth

Chemical Disinfectants

- Chemical Comparisons
- Why Hydrogen Peroxide

Aerosolized Hydrogen Peroxide (aHP)

- Pathogen Kill Mechanisms
- Dosage & Safety Guidelines
- The Technology of Breezy Blue

Clinical Data

- Lab Testing
- Case Studies

Surface HAIs

Surface Spread Pathogens

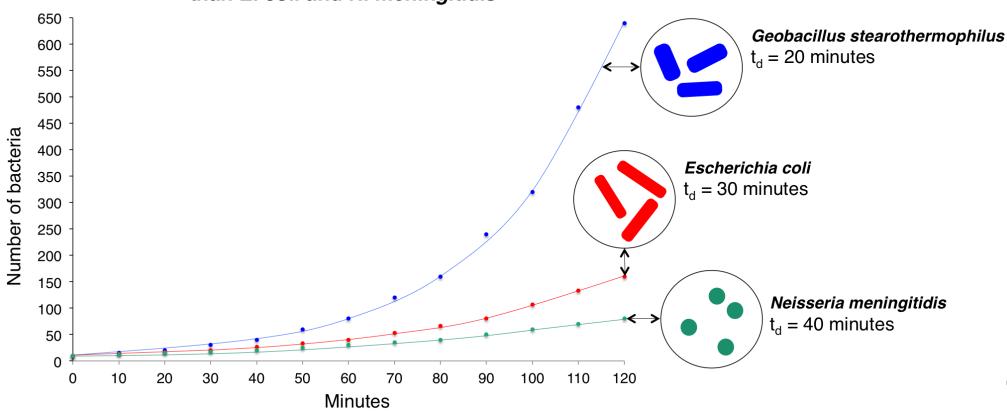
Bacteria

- Staphylococcus aureus (including MRSA): can survive on surfaces for days or even months.
- *Clostridium difficile*: spore-forming bacteria can persist for more than 5 months.
- Vancomycin-resistant enterococci (VRE): can survive on surfaces from 5 days to 4 months.
- Acinetobacter baumannii: known for its persistence on hospital surfaces from 5 days to over 5 months.
- Gram-negative bacteria: organisms like *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, and *Enterobacteriaceae* can thrive in biofilms on surfaces.
- Escherichia coli: commonly found on hospital surfaces and can be transferred to skin upon contact.

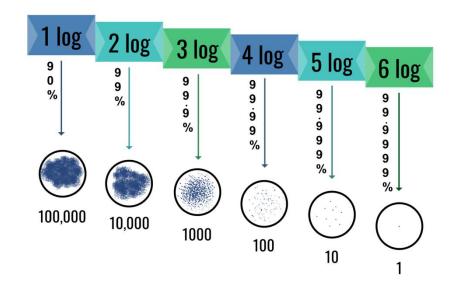
Viruses

- Norovirus: easily spread through contaminated surfaces and can persist for up to 12 days.
- Coronaviruses (including SARS-CoV-2): can survive on various surfaces (plastics, metals, etc.) for days.
- Influenza virus: can survive for 24-48 hours on non-porous surfaces and can be re-aerosolized during cleaning, leading to cross-contamination.
- Rotaviruses: highly infectious and can remain on surfaces for up to 60 days.

Fungi


• Candida auris: can survive on surfaces and medical equipment for up to 14 days.

Pathogen Exponential Regrowth


G. stearothermophilus has a shorter doubling time (t_d) than E. coli and N. meningitidis

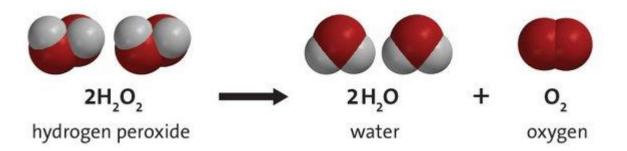
Pathogen Exponential Regrowth

Doubling Times and Regrowth Times after various disinfection log kills within a laboratory environment

Pathogen	T _d (min)	T _r 4 Log (hrs)	T _r 5 Log (hrs)	T _r 6 Log (hrs)
Geobacilus	20	4.4	5.5	6.6
MRSA	30	6.6	8.3	10.0
C. difficile	70	15.5	19.4	23.3
C. auris	150	33.2	41.5	49.8

The growth medium is limited within real-world environments, and the growth rate tapers off as the population returns to the carrying capacity of the environment. Consequently, real-world regrowth rates are slower than laboratory conditions.

Chemical Disinfectants

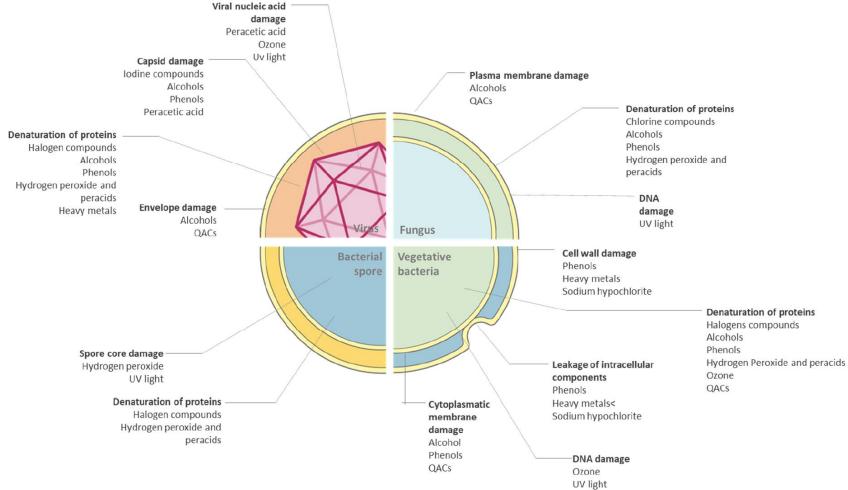


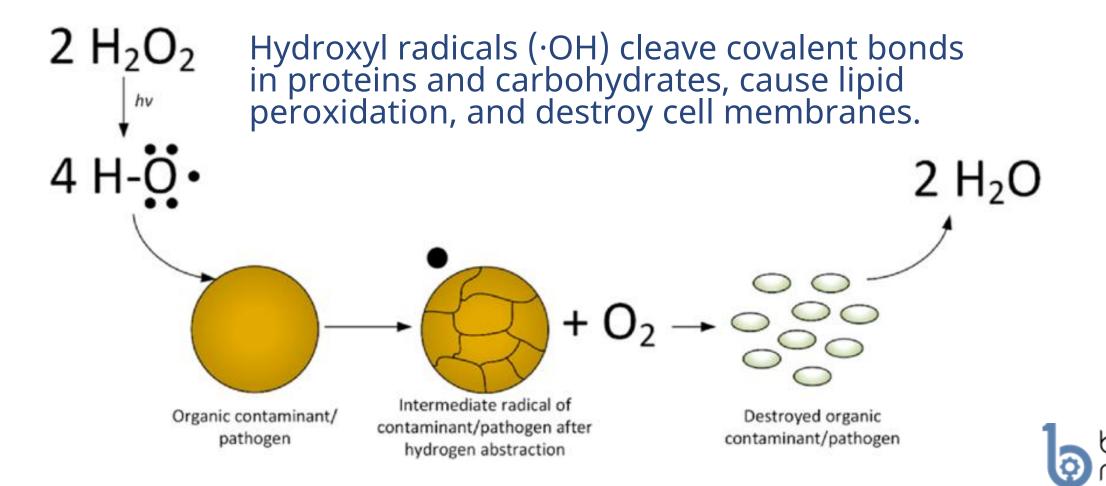
Chemical Comparisons

Property	Hydrogen Peroxide	Hypochlorous Acid	Sodium Hypochlorite (Bleach)	Quaternary Ammonium
Chemistry	H ₂ O ₂ (5-8%)	HOCI (0.05-0.1%) weak acid of chlorine gas dissolved in water	NaClO (5-10%)	Salts of [NR ₄]+, where R is an alkyl, aryl or organyl group (0.1-2%)
High Level Disinfection (6-log kill), Sporicidal (e.g. C. diff)	yes	no	yes	no
Toxicity (skin, eye, swallow, inhale)	skin: irritant eye: irritant swallow: irritant inhale: irritant	skin: none eye: irritant swallow: irritant inhale: irritant	skin: severe burns eye: serious damage swallow: poisonous inhale: hazardous	skin: irritant to burns eye: irritant to damage swallow: harmful inhale: harmful
Residue/Rinse	no residue or rinse	no residue or rinse	requires rinse	leaves residue and requires rinse
Fogging compatibility	dry fog, biodegrades naturally	need to wet surfaces for efficacy	harmful if fogged	harmful if fogged
Material compatibility	broad compatibility, mildly corrosive on untreated metals & some plastics	broad compatibility in low concentrations, mildly corrosive on metals and plastics	corrosive on untreated metals & some plastics	broad compatibility, mildly corrosive on untreated metals
Biodegradable	breaks down into water and oxygen very quickly	breaks down into oxygen and chlorate	breaks down into carbon and water within 20 days	many quats are not biodegradable
Odor/fumes	none	none	hazardous fumes/odor	quat needs exhaust
Shelf life (unopened container)	1 year	days to few months	1 year	5 years
Cost	Mid	Mid	Low	Low

Why hydrogen peroxide for disinfection?

- Hydrogen peroxide (H₂O₂) exhibits broad activity against microorganisms
- Naturally occurring ecofriendly chemical, leaves no residue or harmful byproducts
- Good storage stability
- Compatible with most materials
- Active across a wide temperature range
- Hydrogen peroxide aerosol can penetrate all the areas of a room
- Aqueous solutions less than 8% (>92% H_2O) have a low toxicity, are safe to use, and don't require any special transportation precautions




Aerosolized Hydrogen Peroxide (aHP)

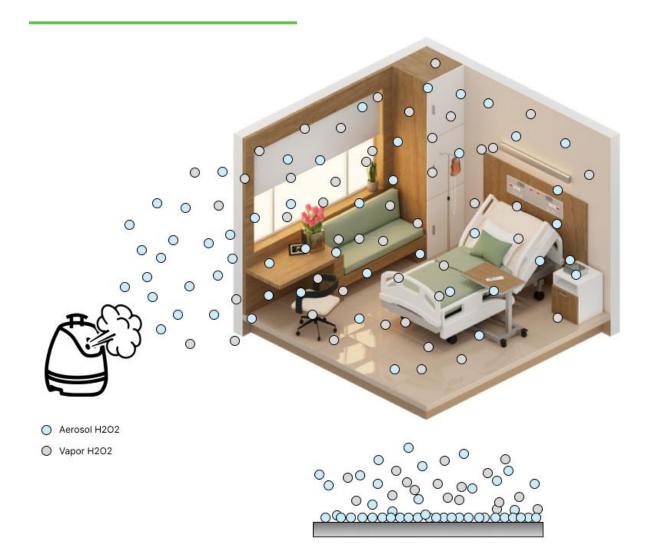
Disinfection Mechanisms

Chemistry of disinfection using H₂O₂

aHP comparison to VHP

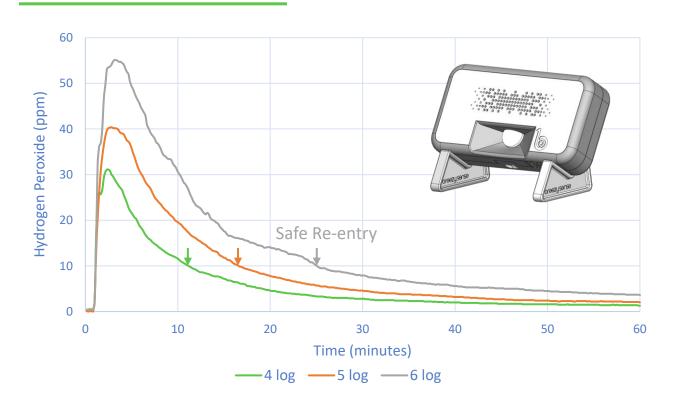
Aerosolized hydrogen peroxide (aHP)

- Cold vaporization
- Fast H₂O₂ distribution
- Less H₂O₂ consumption
- Lower concentration H₂O₂ required
 - Lower operating risk and shipping cost.
 - No need to dehumidify or seal room
- Excellent material compatibility
- Cycle time < 15 minutes possible


Vaporized hydrogen peroxide (VHP)

- Hot vaporization
- Slow H₂O₂ distribution
- More H₂O₂ consumption
- Higher concentration H₂O₂ required
 - Higher operating risk and shipping cost.
 - Need to dehumidify and seal room
- Good material compatibility
- Cycle time < 2 hours possible

aHP disinfection methodology



- Aerosol H₂O₂ droplets rapidly fill a room in 30-120 seconds
- A mixture of H₂O₂ droplets, H₂O₂ vapor, Hydroxyl ions (OH-), and Hydroxyl radicals (·OH) interact with surfaces throughout the room
- After 10 minutes of contact time, there will be a 4-6 log reduction in pathogens
- After up to 20 minutes of evaporation time, the H₂O₂ completely transforms into H₂O and O₂

Sensors measure H₂O₂ in real time

- Electro-chemical H₂O₂ sensors measure dosages for successful disinfection.
- Sensors also indicate when a room is ready for re-entry after disinfection.

H₂O₂ Safety Limits

- NIOSH: 75 ppm immediate exposure limit.
- OSHA: up to 1 ppm time-weighted average over an 8-hour period.

The Technology of Breezy Blue™

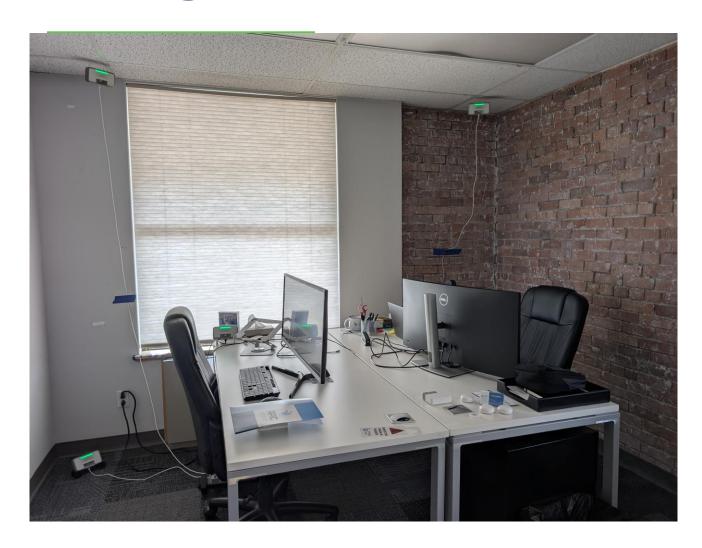
Our Goals

- No-touch disinfection
- High germicidal efficacy
- Whole-room coverage
- Simple to use
- Maintenance free
- Data logging for audits and QA
- Bottom line = save time, money and lives

Hospital Applications

- 1. Isolation Terminal Clean (upon contagious patient discharge)
- 2. Regular Deep Cleaning (sterile equipment rooms, operating rooms, shared restrooms, etc.)
- 3. Transport/EMS (ambulances between patients or shifts)

Clinical Data



Biological indicators

- Bacillus atrophaeus is an industrial bacteria used within Biological indicators (BIs) for validation of sterilization systems (FDA, 2007; Fritze & Pukall, 2001; Gibbons et al., 2011; Weber et al., 2003).
- *B. atrophaeus* is a spore forming bacteria that is difficult to kill and is known as a good proxy for a variety of infectious organisms including *C. difficile*.
- *B. atrophaeus* BIs with more than 10⁴, 10⁵, or 10⁶ CFU per carrier are used to test for >4, >5, or >6 log pathogen reduction.
- If a single *B. atrophaeus* spore remains after the disinfection cycle, it will regrow within the growth medium during a 7-day incubation cycle, turning the medium from violet to yellow.

Biological & Chemical Indicator Testing

- Test H₂O₂ dosage over 10minute contact time with chemical indicators (sensors).
- Measure 8-hour weighted average of H₂O₂ for re-entry time.
- Test germicidal efficacy with tiered BIs (4, 5, and 6 log).
- Test at multiple locations and heights throughout the room.

Third-Party Lab Testing & EPA Registration

Pathogen	Туре	
ANIMAL PATHOGENIC BACTERIA (G- AND G+)	Bacteria	
ANIMAL PATHOGENIC FUNGI	Fungi	
ASPERGILLUS NIGER	Fungi	
ESCHERICHIA COLI	Bacteria	
FELINE CALICIVIRUS	Virus	
HUMAN IMMUNODEFICIENCY VIRUS (HIV-1)	Virus	
INFLUENZA A (H1N1 & H5N1)	Virus	
MOLD/MILDEW	Mold	
NOROVIRUS	Virus	
PSEUDOMONAS SPP.	Bacteria	
RHINOVIRUS	Virus	
SALMONELLA ENTRICA	Bacteria	
SARS-CoV-2 (EPA List N for COVID-19)	Virus	
STAPHYLOCOCCUS AUREUS & MRSA	Bacteria	
SULFATE-REDUCING BACTERIA	Bacteria	

Pathogens tested within third-party GLP laboratories and registered with the EPA for **Breezy HaloSpray**™ disinfectant (registration #84526-1)

aHP Clinical Results

Case Study - Presbyterian Santa Fe Medical Center

- Presbyterian adopted Breezy Blue to assist with the deep disinfection of their Operating Rooms during nightly bio-decontamination starting in July 2023. Prior to adding Breezy Blue, surgical site infections (SSI) occurred every few months. Since adding Breezy Blue two years ago, there has been only one SSI in total.
- "We have been using Breezy Blue as part of our disinfection protocols within our operating rooms for nearly two years," said Jessi Workman, Chief Nursing Executive of Presbyterian Santa Fe Medical Center. "Our results have been outstanding, and we are now adding Breezy Blue to other departments."

aHP Clinical Results

Case Study – reduction of *C. difficile* infections using aHP over a 10-year period

- The <u>American Journal of Infection Control published this study</u> that found that adding aHP to regular cleaning procedures significantly reduced *C. difficile* infection (CDI) rates in hospital settings.
- Prior to the implementation of aHP throughout a 475-bed hospital (July 2009 September 2011), the facility recorded 120 hospital-acquired CDIs.
- **After** the implementation of aHP (April 2012 December 2014), only 72 cases were recorded. This is a **41% decrease in CDIs**, from 4.6 infections per 10,000 patient days to 2.7 per 10,000 patient days.
- The reduction increased over the next few years, and researchers found a 74% decrease in CDIs between January 2015 and December 2019 after implementing aHP throughout the hospital.

Conclusion

- Surface spread HAIs are a challenge due to the long survival and fast regrowth of many pathogens.
- Hydrogen peroxide disinfectant is highly effective, generally safe, ecofriendly, noncorrosive, and leaves no residue.
- When aerosolized, H₂O₂ droplets spread throughout an entire room and disinfect as the droplets transform into H₂O and O₂.
- Dosages (fogging time) can be adjusted to balance pathogen log kill with room re-entry times.
- aHP has been demonstrated in multiple clinical studies to be one of the most effective methods to combat surface-spread HAIs.

Thank You!

breezymed.com

